login
A089154
Expansion of 2*x*(x+2) / ((x-1)*(x^2+6*x-1)).
1
4, 30, 190, 1176, 7252, 44694, 275422, 1697232, 10458820, 64450158, 397159774, 2447408808, 15081612628, 92937084582, 572704120126, 3529161805344, 21747674952196, 134015211518526, 825838944063358, 5089048875898680
OFFSET
1,1
FORMULA
G.f.: 2*x*(x+2) / ((x-1)*(x^2+6*x-1)). [Colin Barker, Dec 02 2012]
MATHEMATICA
LinearRecurrence[{7, -5, -1}, {4, 30, 190}, 22] (* Hugo Pfoertner, Dec 18 2022 *)
CoefficientList[Series[2x (x+2)/((x-1)(x^2+6x-1)), {x, 0, 20}], x] (* Harvey P. Dale, Jul 04 2024 *)
PROG
(PARI) (PARI) \\ Uses the empirical G.f.
a89154(nmax) = {my (v = Vec (serlaplace (2*x*(x+2) / ((x-1)*(x^2+6*x-1)) + O(x^nmax)))); for (k=1, nmax-1, print1(v[k]/k!, ", "))};
a89154(22) \\ Hugo Pfoertner, Dec 18 2022
CROSSREFS
Sequence in context: A132849 A115867 A057416 * A113450 A344399 A268218
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Dec 06 2003
EXTENSIONS
Edited and new name using g.f., Joerg Arndt, Dec 18 2022
STATUS
approved