This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089133 Primes made up by making 5 Bonacci A001591 matrix always odd. 0
 3, 5, 17, 31, 61, 3040049, 5976577, 585029621921, 7536799430533853, 15114377875501666690812160076212633379799041, 4625477479238789293261951042221574153801685983374041180119163207681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These primes are nearly like the 2^n-1 primes. LINKS FORMULA a(n) = If [ Mod[A001591[n], 1]=1 then A001591[n] else A001591[n]+1 If PrimeQ[a[n]]==True then a[n] MATHEMATICA Clear[m] NSolve[x^5-x^4-x^3-x^2-x-1==0, x] k=1.96594823664548545 q=k^2-k-1/k-1/k^2-1/k^3 m0={{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {1, 1, 1, 1, q}} m[n_]=MatrixPower[m0, n]; a=Table[If[Mod[Floor[Re[m[n][[5, 5]]]], 2]==1, Floor[Re[m[n][[5, 5]]]], Floor[Re[m[n][[5, 5]]]]+1], {n, 1, digits}]; b=Table[If[PrimeQ[a[[n]]]==True, a[[n]], 0], {n, 1, digits}] c=Delete[Union[b], 1] CROSSREFS Cf. A001591. Sequence in context: A174913 A079496 A038898 * A103149 A007802 A056816 Adjacent sequences:  A089130 A089131 A089132 * A089134 A089135 A089136 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Dec 05 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .