This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089112 Square array T(r,j) (r>=1, j>=1) read by antidiagonals, where T(r,j) is the sign twisted convoluted convolved Fibonacci number H_j^(r) (see the Moree paper). 0
 1, 1, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 3, 5, 5, 0, 1, 3, 7, 11, 8, 0, 1, 4, 10, 17, 19, 13, 0, 1, 5, 13, 25, 37, 37, 21, 0, 1, 5, 16, 38, 64, 77, 65, 34, 0, 1, 5, 20, 54, 102, 146, 158, 120, 55, 0, 1, 6, 24, 70, 154, 259, 331, 314, 210, 89, 0, 1, 7, 28, 89, 222, 425, 626, 710, 611, 376, 144 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS P. Moree, Convoluted convolved Fibonacci numbers EXAMPLE Triangle begins: 1 1 1 0 1 2 0 1 3 3 0 1 3 5 5 Array begins: [1, 1, 2, 3, 5, 8, 13, 21, ...], [1, 1, 3, 5, 11, 19, 37, 65, ...], [0, 1, 3, 7, 17, 37, 77, 158, ...], [0, 1, 3, 10, 25, 64, 146, 331, ...], [0, 1, 4, 13, 38, 102, 259, 626, ...], [0, 1, 5, 16, 54, 154, 425, 1098, ...], [0, 1, 5, 20, 70, 222, 654, 1817, ...], [0, 1, 5, 24, 89, 309, 967, 2871, ...], ................. MAPLE with(numtheory): m := proc(r, j) d := divisors(r): f := z->-1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 30)): (-1)^r*coeff(Wser, z^j) end: seq(seq(m(n-q+1, q), q=1..n), n=1..17); # for the sequence read by antidiagonals with(numtheory): m := proc(r, j) d := divisors(r): f := z->-1/(1-z-z^2): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): (-1)^r*coeff(Wser, z^j) end: matrix(10, 10, m); # for the square array CROSSREFS Sequence in context: A097609 A077884 A179329 * A155584 A139600 A198321 Adjacent sequences:  A089109 A089110 A089111 * A089113 A089114 A089115 KEYWORD nonn,tabl,easy AUTHOR N. J. A. Sloane, Dec 05 2003 EXTENSIONS Edited by Emeric Deutsch, Mar 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .