OFFSET
1,10
MATHEMATICA
(* Editors' note: this is not a valid program. *)
(* Adamson's matrix functions alternating x^4-x^3-x^2-x-1 Pisot*)
(* and x^4-x^3-1 minimal Pisot theta1*)
digits=200
Solve[x^4-x^3-1==0, x]
k=theta1 real root
q=N[k-1/k^3, 20]
m0={{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, -q}}
NSolve[x^4-x^3-x^2-x-1==0, x]
k1=1.9275619754829254
q1=k1^2-k1-1/k1-1/k1^2
m1={{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 1, 1, q}}
m[n_Integer?Positive] := If[Mod[n, 2]==0, m[n-1].m0, m[n-1].m1]
m[0] ={{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}
a=Table[Floor[m[n][[4, 4]]], {n, 1, digits}]
CROSSREFS
KEYWORD
sign,uned,less
AUTHOR
Roger L. Bagula, Dec 04 2003
STATUS
approved