|
|
A089068
|
|
a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.
|
|
9
|
|
|
0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The a(n+2) represent the Kn12 and Kn22 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums. [Johannes W. Meijer, Sep 21 2010]
|
|
LINKS
|
Table of n, a(n) for n=0..34.
Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
|
|
FORMULA
|
a(n) = A008937(n-2)+A008937(n-1). - Johannes W. Meijer, Sep 21 2010
a(n) = A018921(n-5)+A018921(n-4), n>4. - Johannes W. Meijer, Sep 21 2010
a(n) = A000073(n+2)-1. [From R. J. Mathar, Sep 22 2010]
a(n) = a(n-1)+A001590(n+1). [Johannes W. Meijer, Sep 22 2010]
a(n) = sum(A040000(m)*A000073(n-m),m=0..n). [Johannes W. Meijer, Sep 22 2010]
a(n+2) = add(A008288(n-k+1,k+1),k=0..floor(n/2)). [Johannes W. Meijer, Sep 22 2010]
G.f. = x^2*(1+x)/((1-x)*(1-x-x^2-x^3)). [Johannes W. Meijer, Sep 22 2010]
a(n) = 2*a(n-1)-a(n-4), a(0)=0, a(1)=0, a(2)=1, a(3)=3. [From Bruno Berselli, Sep 23 2010]
|
|
MATHEMATICA
|
Join[{a=0, b=0, c=1}, Table[d=a+b+c+2; a=b; b=c; c=d, {n, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
RecurrenceTable[{a[0]==a[1]==0, a[2]==1, a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n], {n, 40}] (* or *) LinearRecurrence[{2, 0, 0, -1}, {0, 0, 1, 3}, 40] (* Harvey P. Dale, Sep 19 2011 *)
|
|
CROSSREFS
|
Cf. A000931, A000073, A077939, A113300, A001057, A006054, A033505.
Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25). [Johannes W. Meijer, Sep 21 2010]]
Sequence in context: A328609 A227681 A055244 * A018180 A079735 A341580
Adjacent sequences: A089065 A089066 A089067 * A089069 A089070 A089071
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula, Dec 03 2003
|
|
EXTENSIONS
|
Corrected and information added by Johannes W. Meijer, Sep 22 2010, Oct 22, 2010
Definition based on arbitrarily set floating-point precision removed - R. J. Mathar, Sep 30 2010
|
|
STATUS
|
approved
|
|
|
|