

A089055


Solution to the nonsquashing boxes problem (version 2).


2



2, 4, 8, 16, 28, 46, 72, 108, 156, 218, 298, 398, 524, 678, 868, 1096, 1372, 1698, 2086, 2538, 3070, 3684, 4398, 5214, 6156, 7226, 8450, 9830, 11400, 13162, 15152, 17372, 19868, 22642, 25742, 29170, 32986, 37192, 41850, 46962, 52606, 58784, 65576, 72984, 81106
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Given n+1 boxes labeled 0..n, such that box i weighs i grams and can support a total weight of i grams; a(n) = number of stacks of boxes that can be formed such that no box is squashed.


REFERENCES

Amanda Folsom, Youkow Homma, Jun Hwan Ryu, Benjamin Tong, On a general class of nonsquashing partitions, Discrete Mathematics 339 (2016) 14821506.


LINKS

Table of n, a(n) for n=0..44.
N. J. A. Sloane and J. A. Sellers, On nonsquashing partitions, Discrete Math., 294 (2005), 259274.


FORMULA

See A089054 for g.f.


CROSSREFS

Cf. A000123, A088567. Equals 2*A089054. Row sums of A089239.
Sequence in context: A104899 A057975 A260881 * A305122 A276677 A112128
Adjacent sequences: A089052 A089053 A089054 * A089056 A089057 A089058


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 04 2003


STATUS

approved



