%I #20 Aug 03 2020 02:03:54
%S 1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,0,0,1,1,0,1,1,0,0,
%T 0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,
%U 0,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1
%N a(n) = (A088567(8n) mod 2).
%C This is just to give a pointer to A088567, A089013 and A014707.
%H N. J. A. Sloane and J. A. Sellers, <a href="https://arxiv.org/abs/math/0312418">On non-squashing partitions</a>, arXiv:math/0312418 [math.CO], 2003.
%H N. J. A. Sloane and J. A. Sellers, <a href="https://doi.org/10.1016/j.disc.2004.11.014">On non-squashing partitions</a>, Discrete Math., 294 (2005), 259-274.
%H <a href="/index/Fo#fold">Index entries for sequences obtained by enumerating foldings</a>
%F a(0) = 1, a(2*n) = a(n) for n > 0 and a(2*n+1) = (n mod 2) for n >= 0. - _A.H.M. Smeets_, Aug 02 2018
%Y A038189(n)=a(n) if n>0.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Dec 20 2003