login
A088951
Number of distinct square-subwords in ternary representation of n.
1
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1
OFFSET
0,37
COMMENTS
a(n) <= A088950(n).
LINKS
Eric Weisstein's World of Mathematics, Squarefree Word
EXAMPLE
n=125: a(125)=2 because 125 -> '11122' has 3 square-subwords: 11, 11 and 22 (11---, -11-- and ---22) and two of them are distinct.
CROSSREFS
Cf. A007089.
Sequence in context: A146289 A214575 A081418 * A361633 A186006 A236398
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 25 2003
STATUS
approved