|
|
A088825
|
|
Numbers n such that the sum of largest prime factors of numbers from 1 to n is divisible by n.
|
|
4
|
|
|
1, 2, 8, 9, 32, 62, 558, 993, 995, 1947, 2150, 4343, 9944, 10977, 43054658, 202275890, 2291937393, 2459073795, 2836929091, 3737529738, 21382629569, 248208997602, 389691028017, 838566394212, 1019000924619
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(21) > 15*10^9. - Donovan Johnson, Nov 01 2009
a(22) > 10^11. - Donovan Johnson, Jul 09 2010
a(26) > 5*10^12. - Giovanni Resta, Apr 25 2017
|
|
LINKS
|
Table of n, a(n) for n=1..25.
|
|
FORMULA
|
Solutions to Mod[A088822[x], x]=0.
|
|
MATHEMATICA
|
gp[n_] := If[n==1, 0, FactorInteger[n][[-1, 1]]]; Flatten@ Position[ Accumulate[ gp /@ Range[10^5]] / Range[10^5], _Integer] (* Giovanni Resta, Apr 25 2017 *)
|
|
CROSSREFS
|
Cf. A088821-A088824.
Sequence in context: A163619 A166968 A075644 * A337706 A181887 A221049
Adjacent sequences: A088822 A088823 A088824 * A088826 A088827 A088828
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Oct 22 2003
|
|
EXTENSIONS
|
More terms from Ray Chandler, Oct 31 2003
a(17)-a(20) from Donovan Johnson, Nov 01 2009
a(21) from Donovan Johnson, Jul 09 2010
a(22)-a(25) from Giovanni Resta, Apr 25 2017
|
|
STATUS
|
approved
|
|
|
|