login
A088795
a(n) = -1/16-3*n^2/8+17*n/12+n^3/12+(-1)^n/16.
0
1, 2, 3, 5, 8, 13, 20, 30, 43, 60, 81, 107, 138, 175, 218, 268, 325, 390, 463, 545, 636, 737, 848, 970, 1103, 1248, 1405, 1575, 1758, 1955, 2166, 2392, 2633, 2890, 3163, 3453, 3760, 4085, 4428, 4790, 5171, 5572, 5993, 6435, 6898, 7383, 7890, 8420, 8973, 9550
OFFSET
1,2
COMMENTS
Previous name was: Fibonacci(n) as n runs through the quarter-squares. [this is misleading]
This recurrence arose when a middle schooler was asked to complete a number sequence, given six of the Fibonacci numbers (1,2,3,5,8,13) but not told about the Fibonacci sequence.
FORMULA
a(n) = a(n-1) + 1 + A002620(n-2). For n<2: a(1)=1, a(2)=2. O.g.f.: x*(2*x^3-x^2-x+1)/((-1+x)^4*(x+1)). - R. J. Mathar, Dec 05 2007
a(n) = -1/16-3*n^2/8+17*n/12+n^3/12+(-1)^n/16. - R. J. Mathar, Jul 22 2009
EXAMPLE
a(3) = a(2) + 1 + A002620(1) = 2+1+0 = 3
a(4) = a(3) + 1 + A002620(2) = 3+1+1 = 5
a(12) = a(11) + 1 + A002620(10) = 81+1+25 = 107.
CROSSREFS
Cf. A002620.
Sequence in context: A045842 A324741 A200462 * A156145 A216053 A361721
KEYWORD
nonn,easy
AUTHOR
Stewart Charles Cureton (sarah.cureton(AT)att.net), Oct 16 2003
EXTENSIONS
New name using formula by R. J. Mathar from Joerg Arndt, Feb 27 2023
STATUS
approved