%I #25 Sep 03 2019 17:46:42
%S 1,1,1,2,2,3,1,3,3,5
%N Number of connected strongly regular simple graphs on n nodes.
%H T. Hoppe and A. Petrone, <a href="http://arxiv.org/abs/1408.3644">Integer sequence discovery from small graphs</a>, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
%H T. Hoppe and A. Petrone, <a href="http://doi.org/10.1016/j.dam.2015.07.017">Integer sequence discovery from small graphs</a>, Discr. Appl. Math. 201 (2016) 172-181.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StronglyRegularGraph.html">Strongly Regular Graph</a>
%e 1: K_1 (1 graph)
%e 2: P_2 = K_2 (1 graph)
%e 3: C_3 = K_3 (1 graph)
%e 4: C_4, K_4 (2 graphs)
%e 5: C_5, K_5 (2 graphs)
%e 6: K_6, Ci_6(1,2), K_{3,3} (3 graphs)
%e Here, Ci_n(...) a circulant graph.
%Y Cf. A005177, A076435, A294405.
%K nonn,more
%O 1,4
%A _Eric W. Weisstein_, Oct 12 2003
%E a(10) from the Encyclopedia of Finite Graphs (_Travis Hoppe_ and _Anna Petrone_), Apr 11 2014