login
Number of polygons with polygonal holes on the square lattice enumerated by half-perimeter.
1

%I #12 Oct 06 2019 18:21:30

%S 0,1,2,7,28,124,588,2939,15292,82168,453376,2558074,14712038,86029132,

%T 510455002,3068304865,18658787150,114663168405,711391109162,

%U 4452321247688,28090360338572,178550339417087,1142799275636690

%N Number of polygons with polygonal holes on the square lattice enumerated by half-perimeter.

%C The polygons and the hole are self-avoiding and mutually-avoiding, i.e., no degree four vertices are allowed. Translations are allowed, rotations and reflections are not allowed. The contribution of the holes to the perimeter is counted. The number of the holes is not limited, possibly no holes.

%D A. J. Guttmann, I. Jensen, L. H. Wong and I. G. Enting, J. Phys. A, Vol. 33 (2000) 1735-1764.

%H I. Jensen, <a href="/A088702/b088702.txt">Table of n, a(n) for n = 1..43</a> (from link below)

%H I. Jensen, <a href="https://researchers.ms.unimelb.edu.au/~ij@unimelb/polygons/series/square.perim.allholes.ser">More terms</a>

%H I. Jensen, <a href="https://researchers.ms.unimelb.edu.au/~ij@unimelb/polygons/Polygons_ser.html">Series expansions for self-avoiding polygons</a>

%Y Cf. A002931 (self-avoiding polygons), A056634 (self-avoiding polygons with exactly one hole), A056638 (self-avoiding polygons with exactly two holes), A056639 (self-avoiding polygons with exactly three holes).

%K nonn

%O 1,3

%A Markus Voege (markus.voege(AT)inria.fr), Nov 23 2003