The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088689 Jacobsthal numbers modulo 3. 4
 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Period 6 = A175286(3). LINKS M. E. Muldoon and A. A. Ungar, Beyond Sin and Cos, Mathematics Magazine, 69,1,(1996). Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1). FORMULA E.g.f.: exp(x) - exp(-x/2)*cos(sqrt(3)*x/2) - 3*exp(x/2)*sin(sqrt(3)*x/2)/sqrt(3); E.g.f.: F(1, 3, 1, x) + F(1, 3, 2, x) + F(1, 6, 4, x) + F(1, 6, 5, x); a(n) = a(n-6), with a(0)=0, a(1)=a(2)=1, a(3)=0, a(4)=a(5)=2; a(n) = 1 - cos(2*Pi*n/3) - 3*sin(Pi*n/3)/3. a(n) = A001045(n) mod 3. G.f.: x*(1+2*x^3)/(1-x+x^2-x^3+x^4-x^5); a(n)=a(n-1)-a(n-2)+a(n-3)-a(n-4)+a(n-5). - Paul Barry, Jul 27 2005 a(n) = 1/30*{12*(n mod 6)+2*[(n+1) mod 6]-8*[(n+2) mod 6]+7*[(n+3) mod 6]+2*[(n+4) mod 6]-3*[(n+5) mod 6]} with n>=0. - Paolo P. Lava, Nov 27 2006 a(n) = ( n * floor( 3(n+1)/2 ) - 2n ) mod 3. - Wesley Ivan Hurt, Oct 13 2013 MAPLE A088689:=n->(n*floor(3*(n+1)/2) - 2*n) mod 3; seq(A088689(k), k=0..70); # Wesley Ivan Hurt, Oct 13 2013 MATHEMATICA Table[Mod[n*Floor[3(n+1)/2] - 2n, 3], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 13 2013 *) LinearRecurrence[{1, -1, 1, -1, 1}, {0, 1, 1, 0, 2}, 120] (* Harvey P. Dale, Apr 09 2020 *) PROG (PARI) a(n)=[0, 1, 1, 0, 2, 2][n%6+1] \\ Charles R Greathouse IV, Oct 16 2015 CROSSREFS Sequence in context: A124210 A287447 A110568 * A076898 A174294 A089385 Adjacent sequences:  A088686 A088687 A088688 * A088690 A088691 A088692 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 08:40 EDT 2021. Contains 343064 sequences. (Running on oeis4.)