login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088663 An alternating self-similar sequence of a Sierpinski type with an infinite Pisot root scale. 0
0, 0, -1, 0, 1, 0, -8, 0, 25, 0, -97, 0, 367, 0, -1398, 0, 5259, 0, -19878, 0, 75319, 0, -285137, 0, 1078711, 0, -4081933, 0, 15449144, 0, -58467488, 0, 221260378, 0, -837337471, 0, 3168858565, 0, -11992319160, 0, 45383925816, 0, -171751869342, 0, 649981903584, 0, -2459806349188, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Since both 1/n! and (E/(2-E))^n terms can be used to get E, I have mapped the infinite Pisot roots to a self-similar subtractive function like that I used for the factorial.

LINKS

Table of n, a(n) for n=0..47.

FORMULA

p[n_, k_]=Product[(E/(2-E))^i, {i, 1, n}]/Product[(E/(2-E))^i, {i, Floor[n/2^k], n}] a(n) = Sum[Floor[p[n, k]/(8*p[n-1, k])], {k, 1, 8}]

MATHEMATICA

p[n_, k_]=Product[(E/(2-E))^i, {i, 1, n}]/Product[(E/(2-E))^i, {i, Floor[n/2^k], n}] digits=80 f[n_]=Sum[Floor[p[n, k]/(8*p[n-1, k])], {k, 1, 8}] at=Table[f[n], {n, 2, digits}]

CROSSREFS

Cf. A088487 A self similar Sierpinski type chaotic sequence with rate three at eight levels. A088488 A self similar Cantor type sequence with eight levels.

Sequence in context: A167347 A028604 A292531 * A291681 A011997 A187162

Adjacent sequences:  A088660 A088661 A088662 * A088664 A088665 A088666

KEYWORD

sign,uned

AUTHOR

Roger L. Bagula, Nov 21 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 15:23 EDT 2019. Contains 325224 sequences. (Running on oeis4.)