

A088661


A log based Cantor self similar sequence.


0



8, 8, 7, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 5, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 4, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


LINKS

Table of n, a(n) for n=3..107.


FORMULA

p[n_, k_]=Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, nFloor[3*n/4^k], nFloor[n/4^k]}] a(n) = Sum[Floor[p[n, k]/p[n1, k]], {k, 1, 8}]


MATHEMATICA

p[n_, k_]=Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, nFloor[3*n/4^k], nFloor[n/4^k]}] digits=200 f[n_]=Sum[Floor[p[n, k]/p[n1, k]], {k, 1, 8}] at=Table[f[n], {n, 3, digits}]


CROSSREFS

Cf. A088487 A self similar Sierpinski type chaotic sequence with rate three at eight levels. A088488 A self similar Cantor type sequence with eight levels.
Sequence in context: A154400 A215734 A202953 * A127196 A294795 A173623
Adjacent sequences: A088658 A088659 A088660 * A088662 A088663 A088664


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Nov 21 2003


STATUS

approved



