login
A088659
a(n) = n*(p-1) where p is the largest prime factor of n.
1
2, 6, 4, 20, 12, 42, 8, 18, 40, 110, 24, 156, 84, 60, 16, 272, 36, 342, 80, 126, 220, 506, 48, 100, 312, 54, 168, 812, 120, 930, 32, 330, 544, 210, 72, 1332, 684, 468, 160, 1640, 252, 1806, 440, 180, 1012, 2162, 96, 294, 200, 816, 624, 2756, 108, 550, 336, 1026
OFFSET
2,1
COMMENTS
It is conjectured that sequence gives period length of the periodic sequence {A088957(k) mod n}_{k>n}.
The records of this sequence are given by A036689 (product of a prime and the previous number). - Michel Marcus, May 19 2015
LINKS
FORMULA
For p the k-th prime, a(p) = A036689(k). - Michel Marcus, May 19 2015
a(n) = n*A070777(n). - Michel Marcus, May 19 2015
MAPLE
seq(n*(max(numtheory:-factorset(n))-1), n=2..100); # Robert Israel, May 19 2015
MATHEMATICA
Table[n*(FactorInteger[n][[-1, 1]] - 1), {n, 2, 57}] (* Ivan Neretin, May 19 2015 *)
PROG
(PARI) a(n)=n*(component(factor(n), 1)-1)
CROSSREFS
Sequence in context: A220769 A124838 A247578 * A299822 A052100 A079579
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 21 2003
STATUS
approved