%I #16 Feb 06 2022 06:31:39
%S 1,1,2,4,6,9,13,18,24,31,40,50,63,77,95,114,138,163,194,226,266,307,
%T 357,408,471,535,612,690,785,881,995,1110,1248,1387,1550,1714,1908,
%U 2103,2329,2556,2822,3089,3396,3704,4061,4419,4827,5236,5707,6179,6714,7250,7862
%N Bisection of A088567.
%C (1 + x^2 + x^3 + x^4 + x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + ...) = (1 + x + 2x^2 + 4x^3 + 6x^4 + ...). - _Gary W. Adamson_, Jul 27 2010
%F a(n) = A088585(n) - 1 for n >= 1.
%F a(n) = a(n-1) + a(floor(n/2)) + (1-(-1)^n)/2, n > 1. - _Vladeta Jovovic_, Dec 02 2003
%Y Cf. A088567, A088585.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Nov 30 2003