login
Anti-Kolakoski sequence (sequence of run lengths never coincides with the sequence itself).
3

%I #21 Mar 16 2019 17:44:02

%S 1,1,2,2,1,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,2,1,

%T 1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,1,2,2,1,

%U 2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2

%N Anti-Kolakoski sequence (sequence of run lengths never coincides with the sequence itself).

%C Unique infinite word defined on alphabet {1,2} satisfying: a(1)=1, if a(n)=2 length of n-th run is 1, if a(n)=1 length of n-th run is 2. Kolakoski sequence satisfies the opposite definition: K(1)=1, if K(n)=2 length of n-th run is 2, if K(n)=1 length of n-th run is 1.

%C Equals A049705 without the first term. - _Jean-Christophe Hervé_, Nov 10 2014

%F a(n) = 3 - A000002(n+1) = A049705(n+1).

%e a(1)=1 hence first run must have length 2 and necessarily a(2)=1. Now second run must also have length 2 and therefore a(3) = a(4) = 2.

%Y Cf. A000002, A049705.

%K nonn

%O 1,3

%A _Benoit Cloitre_, Nov 17 2003