login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088560 Sum of odd entries in row n of Pascal's triangle. 3
1, 2, 2, 8, 2, 12, 32, 128, 2, 20, 92, 464, 992, 4032, 8192, 32768, 2, 36, 308, 2320, 9692, 52712, 164320, 781312, 1470944, 6249152, 13748672, 56768768, 67100672, 268419072, 536870912, 2147483648, 2, 68, 1124, 14352, 117812, 1003960, 5670400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = a power of 2 iff n = 2^k - 2, 2^k - 1 or 2^k.

A088560(n) = A088504(n) iff n = 2^k - 2, k>1. A088560(n) > A088504(n) iff n = 2^k - 1.

Sums of rows of the triangle in A143333. [From Reinhard Zumkeller, Oct 24 2010]

LINKS

Table of n, a(n) for n=0..38.

FORMULA

A088560(n) + A088504(n) = 2^n. A088504(n) - A088560(n) = A085814(n).

a(2^n)=2; a(2^n-1)=2^(2^n-1); a(2^n+1)=2^(n+1)+4 ... - Benoit Cloitre, Nov 19 2003

MATHEMATICA

f[n_] := Plus @@ Select[ Table[ Binomial[n, i], {i, 0, n}], OddQ[ # ] & ]; Table[ f[n], {n, 0, 38}] (from Robert G. Wilson v Nov 19 2003)

PROG

(PARI) a(n)=sum(i=0, n, binomial(n, i)*(binomial(n, i)%2))

CROSSREFS

Cf. A001316.

Sequence in context: A098818 A092694 A098984 * A222821 A245497 A086328

Adjacent sequences:  A088557 A088558 A088559 * A088561 A088562 A088563

KEYWORD

nonn

AUTHOR

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 17 2003

EXTENSIONS

Edited and extended by Robert G. Wilson v and Ray Chandler, Nov 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 02:47 EST 2014. Contains 252175 sequences.