login
A088533
Numbers n such that Bigomega(n!)/Omega(n!) is an integer.
2
2, 3, 4, 7, 15, 22, 24, 40, 49, 58, 71, 74, 92, 124, 179, 183, 232, 237, 413, 542, 547, 731, 752, 758, 983, 1266, 1283, 1289, 1336, 1706, 1712, 1725, 2656, 2909, 3509, 3612, 3653, 3674, 3702, 3709, 4617, 4646, 4697, 5993
OFFSET
1,1
LINKS
M. Hassani, On the decomposition of n! into primes, arXiv:math/0606316.
FORMULA
Let k = number of prime divisors of n! counted with multiplicity; b = number of distinct prime divisors of n!. Then n is in sequence if k/b is an integer.
EXAMPLE
S(4!) = bigomega(4!) / omega(4!) = 4/2 = 2 so 4 is 3rd term in the sequence.
MATHEMATICA
ointQ[n_]:=Module[{f=n!}, IntegerQ[PrimeOmega[f]/PrimeNu[f]]]; Select[Range[ 2, 6000], ointQ] (* Harvey P. Dale, Dec 07 2013 *)
Omega = Nu = 0; a = {}; Do[If[PrimeQ[n], Nu++]; Omega += PrimeOmega[n];
If[Divisible[Omega, Nu], AppendTo[a, n]], {n, 2, 6000}]; a (* Ivan Neretin, Mar 14 2017 *)
PROG
(PARI) for(x=2, 10000, x1=x!; y=bigomega(x1)/omega(x1); if(y==floor(y), print1((x)", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Nov 16 2003
STATUS
approved