%I
%S 8,10,8,8,13,8,8,24,8,8,19,8,8,22,8,8,42,8,8,28,8,8,31,8,8,86,8,8,37,
%T 8,8,40,8,8,78,8,8,46,8,8,49,8,8,96,8,8,55,8,8,58,8,8,167,8,8,64,8,8,
%U 67,8,8,132,8,8,73,8,8,76,8,8,150,8,8,82,8,8,85,8,8,328,8,8,91,8,8,94,8,8
%N A selfsimilar Sierpinskitype chaotic sequence with rate three at eight levels.
%C A true fractal has an infinite number of levels, but usually only six are visible.
%F p[n, k]=n!/Product[i, {i, 1, nFloor[n/3^k]}] a(n) = Sum[Floor[p[n, k]/p[n1, k]], {k, 1, 8}]
%t p[n_, k_]=n!/Product[i, {i, 1, nFloor[n/3^k]}] digits=200 f[n_]=Sum[Floor[p[n, k]/p[n1, k]], {k, 1, 8}] at=Table[f[n], {n, 2, digits}]
%K nonn,uned
%O 2,1
%A _Roger L. Bagula_, Nov 09 2003
