login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088442 A linear version of the Josephus problem. 8
1, 3, 1, 3, 9, 11, 9, 11, 1, 3, 1, 3, 9, 11, 9, 11, 33, 35, 33, 35, 41, 43, 41, 43, 33, 35, 33, 35, 41, 43, 41, 43, 1, 3, 1, 3, 9, 11, 9, 11, 1, 3, 1, 3, 9, 11, 9, 11, 33, 35, 33, 35, 41, 43, 41, 43, 33, 35, 33, 35, 41, 43, 41, 43, 129, 131, 129, 131, 137, 139, 137, 139, 129, 131 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Or a(n) is in A145812 such that (2n+3-a(n))/2 is in A145812 as well. Note also that a(n)+2A090569(n+1)=2n+3. [From Vladimir Shevelev, Oct 20 2008]

REFERENCES

C. Groer, The mathematics of survival ..., Amer. Math. Monthly, 110 (No. 9, 2003), 812-825. (This is the sequence W(2n+1).)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

To get a(n), write 2n+1 as Sum b_j 2^j, then a(n) = 1 + Sum_{j odd} b_j 2^j.

Also, a(n) = 2*ceiling(n/2)+1-2*a(ceiling(n/2)).

Equals A004514 + 1. - Chris Groer (cgroer(AT)math.uga.edu), Nov 10, 2003

EXAMPLE

If n=4, 2n+1 = 9 = 1 + 0*2 + 0*2^2 + 1*2^3, so a(4) = 1 + 0*2 + 1*2^3 = 9.

MAPLE

a:=proc(n) local b: b:=convert(2*n+1, base, 2): 1+sum(b[2*j]*2^(2*j-1), j=1..nops(b)/2) end: seq(a(n), n=0..100);

MATHEMATICA

a[n_] := a[n]= 2*Ceiling[n/2]+1-2a[Ceiling[n/2]]

PROG

(Haskell)

a088442 = (+ 1) . a004514  -- Reinhard Zumkeller, Sep 26 2015

CROSSREFS

Cf. A006257, A088443, A088452.

Sequence in context: A082511 A265307 A133579 * A037095 A160654 A146436

Adjacent sequences:  A088439 A088440 A088441 * A088443 A088444 A088445

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 09 2003

EXTENSIONS

More terms from Emeric Deutsch, May 27 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 16:42 EDT 2018. Contains 316286 sequences. (Running on oeis4.)