This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088441 A one third Cantor set as a factorial product function. 0
 1, 3, 1, 1, 6, 2, 1, 9, 4, 1, 12, 5, 1, 15, 7, 1, 18, 8, 1, 21, 10, 1, 24, 11, 1, 27, 13, 1, 30, 14, 1, 33, 16, 1, 36, 17, 1, 39, 19, 1, 42, 20, 1, 45, 22, 1, 48, 23, 1, 51, 25, 1, 54, 26, 1, 57, 28, 1, 60, 29, 1, 63, 31, 1, 66, 32, 1, 69, 34, 1, 72, 35, 1, 75, 37, 1, 78, 38, 1, 81, 40, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS A factorial sequence in three parts that trifurcates in a chaotic sequence: n!=Product[i,{i,n-Floor[2*n/3],n-Floor[n/3]}]* (Product[i,{i,1,n-Floor[2*n/3]-1}]*Product[i,{i,n-Floor[n/3]-1,n}]) LINKS FORMULA p[n]=n!/Product[i, {i, n-Floor[2*n/3], n-Floor[n/3]}] a(n) = Floor[p[n]/p[n-1]] MATHEMATICA p[n_]=n!/Product[i, {i, n-Floor[2*n/3], n-Floor[n/3]}] digits=200 a0=Table[Floor[p[n]/p[n-1]], {n, 2, digits}] CROSSREFS Cf. A088140. Sequence in context: A088439 A162315 A109446 * A061857 A067433 A133567 Adjacent sequences:  A088438 A088439 A088440 * A088442 A088443 A088444 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Nov 09 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .