login
A088438
A chaotic Cantor integer type product set of the factorial function that trifurcates.
0
2, 6, 4, 7, 24, 35, 8, 18, 70, 88, 12, 29, 140, 165, 16, 40, 234, 266, 20, 52, 352, 391, 24, 64, 494, 540, 28, 76, 660, 713, 32, 88, 850, 910, 36, 99, 1064, 1131, 40, 111, 1302, 1376, 44, 123, 1564, 1645, 48, 135, 1850, 1938, 52, 147, 2160, 2255, 56, 159, 2494
OFFSET
0,1
COMMENTS
This result is due to analysis of the prime product, composite product and factorial type function to a more general type of function: n!=Product[Set1[i],{i, limit1, limit2}]*Product[Set2[i],{i,limit3,limit4}] In this case the second product contains two intervals instead of one.
FORMULA
P[n]=n!/Product[i, {i, n-Floor[n/4], n-Floor[3*n/4]}] a(n) = Floor[P[n]/P[n-1]]
MATHEMATICA
(* factorial based function with half interval Cantor hole in the middle*) p[n_]=n!/Product[i, {i, n-Floor[n/4], n-Floor[3*n/4]}] digits=200 a0=Table[Floor[p[n]/p[n-1]], {n, 2, digits}]
CROSSREFS
Cf. A088140.
Sequence in context: A364897 A266120 A296348 * A259284 A345974 A204906
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Nov 09 2003
STATUS
approved