%I #30 Dec 13 2022 02:59:33
%S 1,2,32,1728,221184,55296000,23887872000,16387080192000,
%T 16780370116608000,24465779630014464000,48931559260028928000000,
%U 130255810750197006336000000,450164081952680853897216000000,1978020976100079672024367104000000,10855379116837237240069726666752000000
%N a(n) = 2^n*(n!)^3.
%C A010050(n) / a(n) is the probability that there will be no intersections among n rays in the plane with endpoints chosen randomly, uniformly, and independently on a given line segment and angles chosen randomly, uniformly, and independently in [0, 2*Pi). - _Jason Zimba_, Apr 03 2022
%H G. C. Greubel, <a href="/A088386/b088386.txt">Table of n, a(n) for n = 0..172</a>
%F a(0) = 1; a(n) = 2*n^3*a(n-1) for n >= 1. - _Georg Fischer_, May 23 2021
%t Table[2^n*(n!)^3, {n,0,20}] (* _G. C. Greubel_, Dec 12 2022 *)
%o (PARI) for(n=0,20,print1(2^n*(n!)^3, ", "));
%o (Magma) [2^n*Factorial(n)^3: n in [0..20]]; // _G. C. Greubel_, Dec 12 2022
%o (SageMath) [2^n*factorial(n)^3 for n in range(21)] # _G. C. Greubel_, Dec 12 2022
%Y Cf. A000165, A010050, A055546.
%K nonn,easy
%O 0,2
%A _Cino Hilliard_, Nov 08 2003
%E Offset corrected from 1 to 0 and definition changed by _Georg Fischer_, May 23 2021