login
A088386
a(n) = 2^n*(n!)^3.
1
1, 2, 32, 1728, 221184, 55296000, 23887872000, 16387080192000, 16780370116608000, 24465779630014464000, 48931559260028928000000, 130255810750197006336000000, 450164081952680853897216000000, 1978020976100079672024367104000000, 10855379116837237240069726666752000000
OFFSET
0,2
COMMENTS
A010050(n) / a(n) is the probability that there will be no intersections among n rays in the plane with endpoints chosen randomly, uniformly, and independently on a given line segment and angles chosen randomly, uniformly, and independently in [0, 2*Pi). - Jason Zimba, Apr 03 2022
LINKS
FORMULA
a(0) = 1; a(n) = 2*n^3*a(n-1) for n >= 1. - Georg Fischer, May 23 2021
MATHEMATICA
Table[2^n*(n!)^3, {n, 0, 20}] (* G. C. Greubel, Dec 12 2022 *)
PROG
(PARI) for(n=0, 20, print1(2^n*(n!)^3, ", "));
(Magma) [2^n*Factorial(n)^3: n in [0..20]]; // G. C. Greubel, Dec 12 2022
(SageMath) [2^n*factorial(n)^3 for n in range(21)] # G. C. Greubel, Dec 12 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Nov 08 2003
EXTENSIONS
Offset corrected from 1 to 0 and definition changed by Georg Fischer, May 23 2021
STATUS
approved