login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088368 G.f. satisfies: A(x) = Sum_{n>=0} n!*x^n*A(x)^n. 14
1, 1, 3, 13, 69, 421, 2867, 21477, 175769, 1567273, 15213955, 160727997, 1846282381, 23013527421, 310284575683, 4506744095141, 70199956070705, 1167389338452753, 20636801363971139, 386304535988493101, 7630926750477398037, 158584458024427667669 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = number of partitions of [n] into sets of noncrossing lists. For example, a(4) = 69 counts the 73 partitions of [n] into sets of lists (A000262) except for 13-24, 13-42, 31-24, 31-42 which are crossing. - David Callan, Jul 25 2008

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841.

David Callan and Emeric Deutsch, The Run Transform, arXiv preprint arXiv:1112.3639, 2011

FORMULA

G.f.: A(x) = (1/x)*Series_Reversion( x/[Sum_{n>=0} n!*x^n] ).

G.f. satisfies: A(x) = 1/(1 - x*A(x)/(1 - x*A(x)/(1 - 2*x*A(x)/(1 - 2*x*A(x)/(1 - 3*x*A(x)/(1 - 3*x*A(x)/(1 - 4*x*A(x)/(1 - ...)))))))), a recursive continued fraction.

G.f. satisfies: A(x/F(x)) = F(x) where F(x) = Sum_{n>=0} n!*x^n.

G.f. A(x) satisfies: A = 1 + x*A(x) * (x*A(x)^2)' / (x*A(x))'. - Paul D. Hanna, Apr 01 2018

a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Apr 10 2019

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 421*x^5 + 2867*x^6 +...

where

A(x) = 1 + x*A(x) + 2!*x^2*A(x)^2 + 3!*x^3*A(x)^3 + 4!*x^4*A(x)^4 +...

Related expansions:

A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1058*x^5 +...

A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 321*x^4 + 1977*x^5 +...

A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 523*x^4 + 3256*x^5 +...

A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 790*x^4 + 4986*x^5 +...

MATHEMATICA

FrequencyDistribution[list_List] := Module[{set = Union[list]}, Table[{set[[i]], Count[list, set[[i]]]}, {i, Length[set]}]]; a[0] = 1; a[n_]/; n>=1 := a[n] = Apply[Plus, Module[{frequencies}, Map[(frequencies=Map[Last, FrequencyDistribution[ # ]]; Sum[frequencies]!*Apply[Multinomial, frequencies]* Product[Map[a, # ]])&, Partitions[n]-1 ]]] Table[a[n], {n, 0, 15}] - David Callan, Jul 25 2008

PROG

(PARI) {a(n)=polcoeff(1/x*serreverse(x/sum(m=0, n, m!*x^m)+x^2*O(x^n)), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) /* Recursive continued fraction: */

{a(n)=local(A=1+x, CF=1+x*O(x^(n+2))); for(i=1, n, for(k=1, n+1, CF=1/(1-((n-k+1)\2+1)*x*A*CF)); A=CF); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) /* Differential Equation */

{a(n) = my(A=1+x); for(i=0, n, A = 1 + x*A*(x*A^2)'/(x*A+ x^2*O(x^n))' ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Apr 01 2018

CROSSREFS

Cf. A198916.

Sequence in context: A088714 A067145 A192739 * A196794 A184818 A007808

Adjacent sequences:  A088365 A088366 A088367 * A088369 A088370 A088371

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 28 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 02:47 EDT 2021. Contains 342934 sequences. (Running on oeis4.)