

A088354


G.f. = continued fraction: A(x)=1/(1xx/(1x^2x^2/(1x^3x^3/(1x^4x^4/(...))))).


0



1, 2, 4, 10, 24, 60, 150, 376, 944, 2372, 5962, 14988, 37684, 94752, 238252, 599090, 1506440, 3788036, 9525280, 23952020, 60229184, 151450970, 380835368, 957640640, 2408063340, 6055266600, 15226449480, 38288118984, 96278523274, 242100012876, 608779761460, 1530825191912
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..31.


FORMULA

G.f.: 1/Q(0), where Q(k)= 1  x^(k+1)  x^(k+1)/Q(k+1); (continued fraction).  Sergei N. Gladkovskii, Apr 30 2013
G.f.: T(0)/(1x), where T(k) = 1  x^(k+1)/(x^(k+1)  (1x^(k+1))*(1x^(k+2))/T(k+1) ); (continued fraction).  Sergei N. Gladkovskii, Oct 14 2013


PROG

(PARI)
N = 66; x = 'x + O('x^N);
Q(k) = if(k>N, 1, 1  x^(k+1)*( 1 + 1/Q(k+1) ) );
gf = 1/Q(0);
Vec(gf)
/* Joerg Arndt, May 01 2013 */


CROSSREFS

Sequence in context: A038373 A052987 A100087 * A055919 A006575 A230551
Adjacent sequences: A088351 A088352 A088353 * A088355 A088356 A088357


KEYWORD

nonn


AUTHOR

Paul D. Hanna, Sep 26 2003


EXTENSIONS

Added more terms, Joerg Arndt, May 01 2013


STATUS

approved



