login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088316 a(n) = 13*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13. 5
2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (13+sqrt(173))/2.

Lim a(n)/a(n+1) as n approaches infinity = 0.07647321... = 2/(13+sqrt(173)).

For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

LINKS

Table of n, a(n) for n=0..16.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

FORMULA

a(n) = ((13+sqrt(173))/2)^n + ((13-sqrt(173))/2)^n.

G.f.: (2-13*x)/(1-13*x-x^2). [Philippe Deléham, Nov 02 2008]

From Johannes W. Meijer, Jun 12 2010: (Start)

a(2*n+1) = 13*A097845(n).

a(3*n+1) = A041318(5n), a(3n+2) = A041318(5n+3), a(3n+3) = 2*A041318(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A088316(n) + A140455(n)*sqrt(173))/2.

Limit(A088316(n)/A140455(n), n=infinity) = sqrt(173). (End)

EXAMPLE

a(4) = 29239 = 13a(3) + a(2) = 13*2236 + 171 = ((13+sqrt(173))/2)^4 + ((13-sqrt(173))/2)^4 = 29239.

CROSSREFS

Cf. A006905.

Sequence in context: A258224 A078363 A143851 * A006905 A119400 A182314

Adjacent sequences:  A088313 A088314 A088315 * A088317 A088318 A088319

KEYWORD

nonn,easy

AUTHOR

Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 13:07 EST 2016. Contains 278875 sequences.