login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088316 a(n) = 13a(n-1) + a(n-2). 4
2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (13+sqrt(173))/2 = 13.07647321... a(0)/a(1)=2/13; a(1)/a(2)=13/171; a(2)/a(3)=171/2236; a(3)/a(4)= 2236/29239; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.07647321... = 2/(13+sqrt(173)) = (sqrt(173)-13)/2.

For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

LINKS

Table of n, a(n) for n=0..16.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

FORMULA

a(n) = 13a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13. a(n) = [(13+sqrt(173))/2]^n + [(13-sqrt(173))/2]^n.

G.f.: (2-13*x)/(1-13*x-x^2). [From Philippe Deléham, Nov 02 2008]

Contribution from Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+1) = 13*A097845(n).

a(3n+1) = A041318(5n), a(3n+2) = A041318(5n+3), a(3n+3) = 2*A041318(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A088316(n) + A140455(n)*sqrt(173))/2.

Limit(A088316(n)/A140455(n), n=infinity) = sqrt(173).

(End)

EXAMPLE

a(4) = 29239 = 13a(3) + a(2) = 13*2236 + 171 = [(13+sqrt(173))/2]^4 + [(13-sqrt(173))/2]^4 = 29238.9999657 + 0.0000342 = 29239.

CROSSREFS

Cf. A006905.

Sequence in context: A177448 A078363 A143851 * A006905 A119400 A182314

Adjacent sequences:  A088313 A088314 A088315 * A088317 A088318 A088319

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 29 02:13 EDT 2014. Contains 245013 sequences.