login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088316 a(n) = 13a(n-1) + a(n-2). 4
2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (13+sqrt(173))/2 = 13.07647321... a(0)/a(1)=2/13; a(1)/a(2)=13/171; a(2)/a(3)=171/2236; a(3)/a(4)= 2236/29239; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.07647321... = 2/(13+sqrt(173)) = (sqrt(173)-13)/2.

For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

LINKS

Table of n, a(n) for n=0..16.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

FORMULA

a(n) = 13a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13. a(n) = [(13+sqrt(173))/2]^n + [(13-sqrt(173))/2]^n.

G.f.: (2-13*x)/(1-13*x-x^2). [From Philippe Deléham, Nov 02 2008]

Contribution from Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+1) = 13*A097845(n).

a(3n+1) = A041318(5n), a(3n+2) = A041318(5n+3), a(3n+3) = 2*A041318(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A088316(n) + A140455(n)*sqrt(173))/2.

Limit(A088316(n)/A140455(n), n=infinity) = sqrt(173).

(End)

EXAMPLE

a(4) = 29239 = 13a(3) + a(2) = 13*2236 + 171 = [(13+sqrt(173))/2]^4 + [(13-sqrt(173))/2]^4 = 29238.9999657 + 0.0000342 = 29239.

CROSSREFS

Cf. A006905.

Sequence in context: A177448 A078363 A143851 * A006905 A119400 A182314

Adjacent sequences:  A088313 A088314 A088315 * A088317 A088318 A088319

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 15:24 EST 2014. Contains 250363 sequences.