|
|
A088299
|
|
Values of x + 2y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
|
|
6
|
|
|
5, 7, 8, 11, 11, 13, 14, 16, 17, 17, 19, 20, 19, 20, 23, 23, 25, 25, 26, 25, 28, 29, 28, 29, 31, 29, 31, 32, 35, 35, 32, 34, 37, 35, 38, 37, 35, 38, 41, 37, 41, 41, 43, 44, 43, 43, 46, 41, 47, 46, 49, 49, 47, 49, 44, 47, 49, 50, 49, 53, 49, 50, 53, 52, 55, 49, 56, 56, 52, 53
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..70.
|
|
MATHEMATICA
|
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
Sow[x + 2y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)
|
|
CROSSREFS
|
Cf. A002476, A088241, A088242, A088243, A088296, A088298, A088977.
Sequence in context: A056657 A068312 A082097 * A287068 A013635 A191929
Adjacent sequences: A088296 A088297 A088298 * A088300 A088301 A088302
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Lekraj Beedassy, Nov 03 2003
|
|
EXTENSIONS
|
More terms from Ray Chandler, Nov 04 2003
|
|
STATUS
|
approved
|
|
|
|