login
Number of distinct values that can be assumed by the determinant of an n X n matrix whose entries are all permutations of the numbers 1..n^2.
10

%I #9 Sep 08 2019 11:42:17

%S 1,6,777,79455,13602389,3722956267

%N Number of distinct values that can be assumed by the determinant of an n X n matrix whose entries are all permutations of the numbers 1..n^2.

%C a(5) = 1 + 2*(A085000(5) - (number of terms of A088238)).

%e a(2)=6 because the determinants of the 24 2 X 2 matrices whose entries are all permutations of 1,2,3,4 can only assume the values -10,-5,-2,2,5,10.

%t f[n_] := (p = Permutations[ Table[i, {i, n^2}]]; Length[ Union[ Table[ Det[ Partition[ p[[i]], n]], {i, 1, (n^2)!}]]]) (* _Robert G. Wilson v_ *)

%o See link given in A088238.

%Y Cf. A085000, A088214, A088215, A088216, A088238, A325900.

%K nonn,more,hard

%O 1,2

%A _Hugo Pfoertner_, Sep 23 2003

%E Minor edits and a(6) from _Hugo Pfoertner_, Sep 08 2019