%I #2 Apr 03 2023 10:36:10
%S 2,3,6,10,11,14,18,22,27,30,35,38,42,46,51,58,59,66,70,68,78,82,86,92,
%T 99,102,106,107,110,126,130,134,138,147,150,155,162,166,171,178,179,
%U 190,188,195,198,210,222,226,227,230,238,234,250,254,262,267,270,275,278
%N Largest number that is not a quadratic residue modulo prime(n).
%C These are sometimes called quadratic non-residues modulo p(n). Denote a(n) by LQnR(p_n).
%H Chris Caldwell: The Prime Pages <a href="https://t5k.org/glossary/page.php?sort=QuadraticResidue">Quadratic Residues</a>.
%H F. Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>.
%o (PARI) qnrp(fr,n)= {/* The largest QnR modulo the primes */ local(m,p,fl,jj,j,v=[]); fr=max(fr,2); for(i=fr,n,m=0; p=prime(i); jj=0; fl=2^p-1; j=2; while((j<=(p-1)/2),jj=(j^2)%p; fl-=2^jj; j++); j=p-1; while(m==0,if(bitand(2^j,fl),m=j); j--); v=concat(v,m)); print(v)}
%Y Cf. A088190, A088197, A088198, A088199, A088200, A088201.
%K easy,nonn
%O 2,1
%A Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 23 2003