OFFSET
1,2
COMMENTS
a(n) = smallest m>0 such that -m is a quadratic residue modulo prime(n).
a(n) = smallest m>0 such that prime(n) either splits or ramifies in the imaginary quadratic field Q(sqrt(-m)). Equals -A220862(n) except when n = 1. Cf. A220861, A220863. - N. J. A. Sloane, Dec 26 2012
The values are 1 or a prime number (easily provable!). The maximum occurring prime values increase very slowly: up to 10^5 terms the largest prime is 43. The primes do not appear in order.
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Cor. 5.17, p. 105. - From N. J. A. Sloane, Dec 26 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Ferenc Adorjan, The sequence of largest quadratic residues modulo the primes.
J. A. Bergstra, I. Bethke, A negative result on algebraic specifications of the meadow of rational numbers, arXiv preprint arXiv:1507.00548 [math.RA], 2015-2016.
FORMULA
a(n) = A053760(n) unless -1 is a quadratic residue mod prime(n). - Charles R Greathouse IV, Oct 31 2012
MATHEMATICA
a[n_] := With[{p = Prime[n]}, If[JacobiSymbol[-1, p] > 0, 1, For[d = 2, True, d = NextPrime[d], If[JacobiSymbol[-d, p] >= 0, Return[d]]]]]; Array[a, 100] (* Jean-François Alcover, Feb 16 2018, after Charles R Greathouse IV *)
PROG
(PARI) qrp_pm(fr, to)= {/* The distance of largest QR modulo the primes from the primes */ local(m, p, v=[]); for(i=fr, to, m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1), m=max(m, (j^2)%p); j++); v=concat(v, p-m)); print(v) }
(PARI) do(p)=if(kronecker(-1, p)>0, 1, forprime(d=2, p, if(kronecker(-d, p) >= 0, return(d))))
apply(do, primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003
EXTENSIONS
Edited by Max Alekseyev, Oct 29 2012
STATUS
approved