login
A088190
Largest quadratic residue modulo prime(n).
13
1, 1, 4, 4, 9, 12, 16, 17, 18, 28, 28, 36, 40, 41, 42, 52, 57, 60, 65, 64, 72, 76, 81, 88, 96, 100, 100, 105, 108, 112, 124, 129, 136, 137, 148, 148, 156, 161, 162, 172, 177, 180, 184, 192, 196, 196, 209, 220, 225, 228, 232, 232, 240, 249, 256, 258, 268, 268, 276
OFFSET
1,3
COMMENTS
Denote a(n) by LQR(p_n). Observations (tested up to 20000 primes): - the sequence of largest QR modulo the primes (LQR(p_n) is 'almost' monotonic, - p_n-LQR(p_n) is either 1 or a prime value (see A088192) - if LQR(p_n)<=LQR(p_{n-1}) then p_n==7 mod 8 (when n>2) (see A088194) - if LQR(p_n)<=LQR(p_{n-1}) then p_n-LQR(p_n) is an odd prime, but never 5 (see A088195) For a similar set of sequences, related to quadratic non-residues, see A088196-A088201.
From Robert Israel, Oct 31 2024: (Start)
a(n) = prime(n)-1 if and only if n is 1 or in A080147.
a(n) = prime(n)-2 if and only if prime(n) is in A007520.
a(n) = prime(n)-3 if and only if prime(n) is in A107006. (End)
FORMULA
a(n) = max(r, r==j^2 mod p(n)|j=1, 2, ...(p(n)-1)/2)
MAPLE
lqr:= proc(p) local k;
for k from p-1 by -1 do if numtheory:-quadres(k, p) = 1 then return k fi od:
end proc:
seq(lqr(ithprime(i)), i=1..100); # Robert Israel, Oct 31 2024
MATHEMATICA
a[n_] := With[{p = Prime[n]}, SelectFirst[Range[p - 1, 1, -1], JacobiSymbol[#, p] == 1&]]; Array[a, 100] (* Jean-François Alcover, Feb 16 2018 *)
PROG
(PARI) qrp(fr, to)= {/* Sequence of the largest QR modulo the primes */ local(m, p, v=[]); for(i=fr, to, m=1; p=prime(i); j=2; while((j<=(p-1)/2)&&(m<p-1), m=max(m, (j^2)%p); j++); v=concat(v, m)); print(v) }
KEYWORD
nonn,changed
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 22 2003
STATUS
approved