This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088164 Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4). 5

%I

%S 16843,2124679

%N Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).

%D R. J. McIntosh, On the converse of Wolstenholmeâ€™s Theorem, Acta Arith., 71 (1995), 381-389.

%H Ronald Bruck, <a href="http://imperator.usc.edu/~bruck/research/stirling/">Wolstenholme's Theorem, Stirling Numbers, and Binomial Coefficients</a>

%H Chris Caldwell, The Prime Glossary, <a href="http://primes.utm.edu/glossary/page.php?sort=Wolstenholme">Wolstenholme prime</a>

%H R. J. McIntosh and E. L. Roettger, <a href="http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01955-2/home.html">A search for Fibonacci-Wieferich and Wolstenholme primes</a>, Math. Comp. vol 76, no 260 (2007) pp 2087-2094.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057, 2011

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WolstenholmePrime.html">Wolstenholme Prime</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Wolstenholme_prime">Wolstenholme prime</a>

%K hard,nonn,bref,more

%O 1,1

%A Christian Schroeder (chs@chs-kiel.de), Sep 21 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .