login
A088153
a(n) is the value of the n-th digit in the decimal representation of n^n.
8
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 8, 0, 1, 7, 4, 2, 6, 1, 6, 7, 7, 9, 6, 7, 2, 3, 5, 2, 9, 3, 9, 7, 1, 9, 7, 7, 4, 9, 6, 2, 2, 8, 1, 5, 4, 3, 0, 7, 5, 4, 7, 5, 9, 1, 2, 5, 3, 5, 6, 9, 4, 0, 4, 1, 2, 4, 6, 5, 9, 9, 0, 1, 4, 9, 1, 6, 7, 1, 6, 7, 7, 0, 6, 6, 5, 9, 0, 0, 1, 7, 0, 6, 3, 7, 5, 2, 6, 2, 0, 8
OFFSET
0,12
COMMENTS
a(n) = d(n) with n^n = Sum_{0<=d(k)<10, k>=0} d(k)*10^k.
LINKS
Eric Weisstein's World of Mathematics, Decimal
FORMULA
a(n) = floor(n^n / 10^n) mod 10.
EXAMPLE
For n=16, 16^16 = 18446744073709551616, a(16)=4.
a(0)=1, a(k)=0 for 0 < k < 10 and a(10)=1.
MAPLE
f:= proc(n) local x, L;
x:= n &^ n mod 10^(n+1);
floor(x/10^n)
end proc:
f(0):= 1:
map(f, [$0..101]); # Robert Israel, Dec 02 2022
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Sep 20 2003
STATUS
approved