login
A088151
Value of n-th digit in ternary representation of n^n.
7
1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 1, 2, 2, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 2, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 2, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1
OFFSET
0,14
COMMENTS
a(n)=d(n) with n^n = Sum(d(k)*3^k: 0<=d(k)<3, k>=0).
LINKS
Eric Weisstein's World of Mathematics, Ternary
FORMULA
a(n) = floor(n^n / 3^n) mod 3.
EXAMPLE
n=7, 7^7=3110367 -> '1112211200121', '111221-------': a(7)=1.
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Sep 20 2003
STATUS
approved