login
A088150
Value of n-th digit (counting from the right) in binary representation of n^n.
7
1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1
OFFSET
0,1
COMMENTS
a(n)=d(n) with n^n = Sum(d(k)*2^k: 0<=d(k)<2, k>=0).
LINKS
Eric Weisstein's World of Mathematics, Binary
FORMULA
a(n) = floor(n^n / 2^n) mod 2.
EXAMPLE
n=5, 5^5=3125 -> '110000110101', '1100001-----': a(5)=1.
MATHEMATICA
Join[{1, 0}, Table[IntegerDigits[n^n, 2][[-n-1]], {n, 2, 110}]] (* Harvey P. Dale, Oct 14 2021 *)
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Sep 20 2003
EXTENSIONS
Definition clarified by Harvey P. Dale, Oct 14 2021
STATUS
approved