login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088137 Generalized Gaussian Fibonacci integers. 15
0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Lucas U(P=2,Q=3) sequence. - R. J. Mathar, Oct 24 2012

With different signs, 0, 1, -2, 1, 4, -11, 10, 13, -56, 73, 22, -263, 460,.. also the Lucas U(-2,3) sequence. - R. J. Mathar, Jan 08 2013

From Peter Bala, Apr 01 2018: (Start)

The companion Lucas sequence V(n,2,3) is A087455.

Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = A088137(n)/A087455(n). Cf. A025172 and A127357. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

C. Dement, The Math Forum.

Wikipedia, Lucas sequence

Index entries for linear recurrences with constant coefficients, signature (2,-3).

Index entries for Lucas sequences

FORMULA

a(n) = 3^(n/2)*sin(n*atan(sqrt(2)))/sqrt(2).

|3*A087455(n) - A087455(n+1)| = 2*a(n+1) or 3*A087455(n) + A087455(n+1) = 2*a(n+1). - Creighton Dement, Aug 02 2004

a(n+1) = tes(x^n) = -les(x^n)/3 x= 2('i) - 'k - 'jj' - 'ji' - 'jk' - 1. - Creighton Dement, Aug 02 2004

G.f.: x/(1 - 2*x + 3*x^2).

E.g.f.: exp(x)*sin(sqrt(2)*x)/sqrt(2).

a(n) = 2*a(n-1) - 3*a(n-2) for n>1, a(0)=0, a(1)=1.

a(n) = ((1 + i*sqrt(2))^n - (1 - i*sqrt(2))^n)/(2*i*sqrt(2)), where i=sqrt(-1).

a(n) = Im((1+i*sqrt(2))^n/sqrt(2)).

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)(-2)^k.

3^(n+1) = 9*(A087455(n))^2 + 2*(A087455(n+1))^2 - 2*(a(n+2))^2; 3^n = a(n+1)^2 + 3*a(n)^2 - 2*a(n+1)*a(n) for n > 0 - Creighton Dement, Jan 20 2005

G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013

G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 3*x)/( x*(4*k+4 - 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013

a(n+1) = Sum_{k=0..n} A123562(n,k). - Philippe Deléham, Nov 23 2013

MAPLE

A[0]:= 0: A[1]:= 1:

for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:

seq(A[n], n=0..100); # Robert Israel, Aug 05 2014

MATHEMATICA

LinearRecurrence[{2, -3}, {0, 1}, 40] (* Harvey P. Dale, Nov 03 2014 *)

PROG

(Sage) [lucas_number1(n, 2, 3) for n in xrange(0, 38)] # Zerinvary Lajos, Apr 23 2009

(PARI) x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018

(MAGMA) [n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018

CROSSREFS

Cf. A084102, A088138, A045873, A088139.

Cf. A087455, A025172, A127357.

Sequence in context: A016544 A134028 A111479 * A205870 A064297 A052661

Adjacent sequences:  A088134 A088135 A088136 * A088138 A088139 A088140

KEYWORD

sign,easy

AUTHOR

Paul Barry, Sep 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 07:25 EST 2018. Contains 317225 sequences. (Running on oeis4.)