login
A088012
Odd solutions to abs(sigma(k) - 2k) <= log(k). Numbers k whose abundance-radius does not exceed log(k).
17
1155, 8925, 32445, 442365, 159030135, 815634435, 2586415095
OFFSET
1,1
COMMENTS
This sequence should include odd perfect numbers too, if they exist.
There are no other terms below 2*10^9.
From Walter Nissen, Dec 15 2005: (Start)
abundancy(k) k 2k sigma(k) abundance
1.99480519480519 1155 2310 2304 -6
2.00067226890756 8925 17850 17856 6
2.00018492834027 32445 64890 64896 6
2.00001356346004 442365 884730 884736 6
2.00000011318610 159030135 318060270 318060288 18
1.99999999264376 815634435 1631268870 1631268864 -6
2.00000000695943 2586415095 5172830190 5172830208 18
As it happens, abundance of these is -6, 6 or 18. This is not necessarily true for larger terms. (End)
a(8) > 10^13. - Giovanni Resta, Mar 31 2013
See also A171929 and A188597 and A188263 for sequences of numbers (any / deficient / abundant) whose relative abundancy tends to 2. - M. F. Hasler, Feb 19 2017
From Alexander Violette, Nov 05 2020: (Start)
a(8) <= 221753180448460815.
a(9) <= 3278298202600507814120339275775985.
221753180448460815 and 3278298202600507814120339275775985 are also terms of this sequence and their abundances are -30 and 30 respectively. In fact, 3278298202600507814120339275775985 and 815634435 are the only odd terms known where abs(sigma(k)-2k) <= log_10(k). (End)
EXAMPLE
1155 is in the sequence because sigma(1155) = 2304, giving 2*1155 - 2304 = 6, while natural log of 1155 is about 7.05.
From M. F. Hasler, Jul 18 2016: (Start)
We have the following factorizations:
1155 = 3 * 5 * 7 * 11,
8925 = 3 * 5^2 * 7 * 17,
32445 = 3^2 * 5 * 7 * 103,
442365 = 3 * 5 * 7 * 11 * 383,
159030135 = 3^5 * 5 * 11 * 73 * 163,
815634435 = 3 * 5 * 7 * 11 * 547 * 1291,
2586415095 = 3^2 * 5 * 11 * 31 * 41 * 4111.
The sequence appears to be a subsequence of A171929. (End)
MATHEMATICA
abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Log[n]//N]&&OddQ[n], Print[n]], {n, 1, 100000}]
PROG
(PARI) is(n)=n%2 && abs(sigma(n)-2*n)<=log(n) \\ Charles R Greathouse IV, Feb 21 2017
KEYWORD
hard,nonn,more
AUTHOR
EXTENSIONS
a(7) from Donovan Johnson, Dec 21 2008
STATUS
approved