This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088009 Number of "sets of odd lists", cf. A000262. 19
 1, 1, 1, 7, 25, 181, 1201, 10291, 97777, 1013545, 12202561, 151573951, 2173233481, 31758579997, 524057015665, 8838296029291, 164416415570401, 3145357419120721, 65057767274601217, 1391243470549894135, 31671795881695430521, 747996624368605997701 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The Brauer algebra has a basis consisting of all graphs on the vertex set {1,...,2n} whose vertices all have degree 1. The multiplication is defined in Halverson and Ram. a(n) is also the number of idempotent basis elements (i.e., those satisfying b^2=b) of the Brauer algebra. - James East, Dec 27 2013 From Peter Bala, Nov 26 2017: (Start) The sequence terms have the form 6*m + 1 (follows from the recurrence). a(n+k) = a(n) (mod k) for all n and k. It follows that the sequence a(n) (mod k) is periodic with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 1, 1, 7, 5, 1, 1, 1, 7, 5, ... with exact period 5. (End) LINKS Seiichi Manyama, Table of n, a(n) for n = 0..446 (terms 0..200 from Alois P. Heinz) I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014. T. Halverson, A. Ram, Partition algebras, arXiv:math/0401314 [math.RT], 2004. T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921. FORMULA E.g.f.: exp(x/(1-x^2)). a(n) = n!*Sum_{k=1..n} A168561(n-1,k-1)/k!. - Vladimir Kruchinin, Mar 07 2011 E.g.f.: 1 + x/(G(0)-x) where G(k)= (1-x^2)*k + 1+x-x^2 - x*(1-x^2)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012 E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + 1/(1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1))), (continued fraction). - Sergei N. Gladkovskii, Feb 04 2013 a(n) ~ 2^(-3/4)*n^(n-1/4)*exp(sqrt(2*n)-n) * (1-11/(24*sqrt(2*n))). - Vaclav Kotesovec, Aug 10 2013 a(n) = a(n-1) + 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013 E.g.f.: Product_{n >= 1} (1 + x^n)^(phi(n)/n) = Product_{n >= 0} ( (1 + x^(2*n+1))/(1 - x^(2*n+1)) )^( phi(2*n+1)/(4*n + 2) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A066668 and A000262. - Peter Bala, Jan 01 2014 E.g.f.: Product_{k>0} exp(x^(2*k-1)). - Seiichi Manyama, Oct 10 2017 MAPLE T:= (n, k)-> `if`(n-k mod 2 = 0, binomial((n+k)/2, k), 0): a:= n-> n! * add(T(n-1, k-1)/k!, k=0..n): seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011 MATHEMATICA a[n_] := SeriesCoefficient[ Exp[x/(1 - x^2) ], {x, 0, n}]*n!; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2015 *) PROG (PARI) x='x+O('x^33); Vec(serlaplace(exp(x/(1-x^2)))) /* Joerg Arndt, Mar 09 2011 */ CROSSREFS Cf. A052845, A088026, A000010, A000262, A168561, A318976. Sequence in context: A151491 A208425 A191237 * A293532 A208823 A197913 Adjacent sequences:  A088006 A088007 A088008 * A088010 A088011 A088012 KEYWORD nonn,easy AUTHOR Vladeta Jovovic, Nov 02 2003 EXTENSIONS Prepended a(0)=1 by Joerg Arndt, Jul 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 06:55 EDT 2019. Contains 327995 sequences. (Running on oeis4.)