OFFSET
1,1
COMMENTS
For the i-th primorial there are roughly floor(16*log(2*P(i))) solutions j for the Diophantine equation: j*P(i)# -1 and +1 are prime twins with i >= 7
For i=72, P(i)=359, 115 j values, int(16*log(2*359))=105
For i=26, P(i)=101, 67 j values, int(16*log(2*101))=73
For i=38, P(i)=163, 107 j values, int(16*log(2*163))=81
For i=50, P(i)=229, 102 j values, int(16*log(2*229))=98
EXAMPLE
134464*359# -1 and +1 are twin primes, 134464 is the 115th j value and the last of this sequence
MATHEMATICA
With[{pmrl=Fold[Times, Prime[Range[72]]]}, Select[Range[45000], AllTrue[ pmrl*#+{1, -1}, PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 29 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Oct 15 2003
EXTENSIONS
Needs to be edited in a similar manner to A087820. - N. J. A. Sloane
STATUS
approved