login
A087898
Choose a(n) so that 2*3*5*13*...*a(n) - 1 is prime; a(n) is prime; and a(n) > a(n-1).
4
2, 3, 5, 13, 23, 37, 53, 67, 79, 157, 173, 191, 197, 277, 281, 461, 479, 503, 619, 829, 907, 997, 1033, 1303, 1459, 1493, 1663, 2357, 2467, 3331, 3347, 3407, 4093, 4441, 4591, 4987, 5179, 5189, 6911, 8807, 9227, 9739, 10243, 10559, 11093, 11549, 11617
OFFSET
1,1
COMMENTS
Recursive prime generating sequence.
REFERENCES
Harvey Dubner, Recursive Prime Generating Sequences, Journal of Recreational Mathematics, Vol. 29, No. 3 (1998), pp. 170-175, see p. 173, Table 3.
LINKS
MATHEMATICA
a[1] = 2; a[n_] := a[n] = Module[{r = Product[a[k], {k, 1, n - 1}], p = NextPrime[a[n - 1]]}, While[! PrimeQ[r*p - 1], p = NextPrime[p]]; p]; Array[a, 50] (* Amiram Eldar, Jan 19 2023 *)
CROSSREFS
For the primes so generated see A087899.
Cf. A039726.
Sequence in context: A235621 A193300 A215310 * A282236 A215306 A072537
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Oct 14 2003
EXTENSIONS
More terms from Ray Chandler, Nov 06 2003
STATUS
approved