login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087800 a(n) = 12a(n-1) - a(n-2), with a(0) = 2 and a(1) = 12. 3
2, 12, 142, 1692, 20162, 240252, 2862862, 34114092, 406506242, 4843960812, 57721023502, 687808321212, 8195978831042, 97663937651292, 1163771272984462, 13867591338162252, 165247324784962562, 1969100306081388492 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (6+sqrt(35)) = 11.9160797... a(0)/a(1)=2/12; a(1)/a(2)=12/142; a(2)/a(3)=142/1692; a(3)/a(4)=1692/20162; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.0839202... = 1/(6+sqrt(35)) = (6-sqrt(35)).

Except for the first term, positive values of x (or y) satisfying x^2 - 12xy + y^2 + 140 = 0. - Colin Barker, Feb 25 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for linear recurrences with constant coefficients, signature (12,-1).

FORMULA

a(n) = (6+sqrt(35))^n + (6-sqrt(35))^n.a(n) = 2*A023038(n).

G.f.: (2-12x)/(1-12x+x^2). - From Philippe Deléham, Nov 17 2008

a(-n) = a(n). - Michael Somos, May 28 2014

EXAMPLE

a(4) = 20162 = 12a(3) - a(2) = 12*1692 - 142 = (6+sqrt(35))^4 + (6-sqrt(35))^4 =

20161.9999504 + 0.00004959 = 20162.

G.f. = 2 + 12*x + 142*x^2 + 1692*x^3 + 20162*x^4 + 240252*x^5 + ...

MATHEMATICA

a[0] = 2; a[1] = 12; a[n_] := 12a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)

CoefficientList[Series[(2 - 12 x)/(1 - 12 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 28 2014 *)

a[ n_] := 2 ChebyshevT[ n, 6]; (* Michael Somos, May 28 2014 *)

PROG

(Sage) [lucas_number2(n, 12, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

(PARI) Vec((2-12*x)/(1-12*x+x^2) + O(x^100)) \\ Colin Barker, Feb 25 2014

(PARI) {a(n) = 2 * polchebyshev( n, 1, 6)}; /* Michael Somos, May 28 2014 */

CROSSREFS

Cf. A009747, A086928, A001927, A023038.

Sequence in context: A091144 A275829 A240387 * A009747 A208866 A067601

Adjacent sequences:  A087797 A087798 A087799 * A087801 A087802 A087803

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.