login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087787 a(n) = Sum_{k=0..n} (-1)^(n-k)*A000041(k). 13
1, 0, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Essentially first differences of A024786 (see the formula). Also, a(n) is the number of 2's in the last section of the set of partitions of n+2 (see A135010). - Omar E. Pol, Sep 10 2008

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: 1/(1+x)*1/Product_{k>0} (1-x^k).

a(n) = 1/n*Sum_{k=1..n} (sigma(k)+(-1)^k)*a(n-k).

a(n) = A024786(n+2)-A024786(n+1). - Omar E. Pol, Sep 10 2008

a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) * (1 + (11*Pi/(24*sqrt(6)) - sqrt(3/2)/Pi)/sqrt(n) - (11/16 + (23*Pi^2)/6912)/n). - Vaclav Kotesovec, Nov 05 2016

a(n) = A000041(n) - a(n-1). - Jon Maiga, Aug 29 2019

MATHEMATICA

Table[Sum[(-1)^(n-k)*PartitionsP[k], {k, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 16 2015 *)

(* more efficient program *) sig = 1; su = 1; Flatten[{1, Table[sig = -sig; su = su + sig*PartitionsP[n]; Abs[su], {n, 1, 50}]}] (* Vaclav Kotesovec, Nov 06 2016 *)

CROSSREFS

Cf. A000041, A024786, A135010, A138121, A141285.

Sequence in context: A076077 A152194 A268630 * A182712 A100818 A005291

Adjacent sequences:  A087784 A087785 A087786 * A087788 A087789 A087790

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Oct 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 12:31 EDT 2020. Contains 333314 sequences. (Running on oeis4.)