The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087754 a(n) = (C(2p,p)-2) / p^3, where p = prime(n). 5
 2, 10, 530, 4734, 474986, 5153122, 676701794, 1232820800342, 15623119507746, 34472401720246110, 6163354867874693078, 83483882991733501114, 15658391111267929558466, 42132263940113324754864134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0 arXiv:1602.02632 R. P. Stanley, MIT Course OCW 18.S66, The Art of Counting, Spring 2003. (Problem 18) FORMULA a(n) = A060842(n) / A000040(n). a(n) = 2 * A034602(n). EXAMPLE a(6)=4734 since 13 is the sixth prime and (C(26,13)-2)/13^3 = (10400600-2)/2197 = 4734. MATHEMATICA Table[(Binomial[2p, p]-2)/p^3, {p, Prime[Range[3, 20]]}] (* Harvey P. Dale, Oct 23 2017 *) CROSSREFS Cf. A268512, A268589, A268590. Sequence in context: A011824 A064300 A290060 * A128295 A089500 A246628 Adjacent sequences:  A087751 A087752 A087753 * A087755 A087756 A087757 KEYWORD nonn AUTHOR Henry Bottomley, Oct 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 05:35 EDT 2020. Contains 334712 sequences. (Running on oeis4.)