

A087734


a(n) = f(f(n)), where f() = A035327().


2



0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,11


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..16384
J.P. Allouche and J. Shallit, The ring of kregular sequences, II, Theoret. Computer Sci., 307 (2003), 329.


FORMULA

From Mikhail Kurkov, Sep 29 2019: (Start)
a(n) = n  Sum_{k=A063250(n)..A000523(n)} 2^k = n  2^(A000523(n)+1) + 2^A063250(n) for n>0 with a(0)=0.
G.f.: 1/(1x) * Sum_{j>=0} (2^j)*((x^(2^j))/(1+x^(2^j))  (1x^(2^j)) * Sum_{k>=1} x^((2^j)*(2^k1))).
a(n) = 2*a(floor(n/2)) + n mod 2  A036987(n) for n>1 with a(0)=a(1)=0.
a(n) = (1  A036987(n1))*(1 + A063250(n)  A063250(n1))*(1 + a(n1)) for n>0 with a(0)=0.
(End)


MAPLE

a:= n> ((i>Bits[Nand](i$2))@@2)(n):
seq(a(n), n=0..100); # Alois P. Heinz, Sep 29 2019


MATHEMATICA

{0}~Join~Array[Nest[BitXor[#, 2^IntegerPart[Log2@ # + 1]  1] &, #, 2] /. 1 > 0 &, 81] (* Michael De Vlieger, Sep 29 2019 *)


CROSSREFS

Sequence in context: A240658 A063890 A156439 * A073644 A123343 A054439
Adjacent sequences: A087731 A087732 A087733 * A087735 A087736 A087737


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Oct 01 2003


STATUS

approved



