

A087717


Start with x=n, then iterate the map x > A322982(x) with A322982(x)=2*x1 if x is noncomposite, otherwise A322982(x) = A032742(x), the largest proper divisor of x. If this iteration leads to a fixed point then a(n) is the value of that fixed point. If the iteration leads to a cycle, a(n) is the smallest value in the cycle. If the iteration never becomes periodic then a(n)=0.


3



1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 19, 19, 3, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjecture. For n > 1, the iteration given in the definition above always leads to the 3cycle {3,5,9,3} or the 6cycle {19,37,73,145,29,57,19}, thus a(n) takes on only the values 3 or 19 for n=2,3,4,.... This has been verified to n=1000000.
In range 2..100000 term 3 occurs 77630 times, while 19 occurs 22369 times.  Antti Karttunen, Jan 03 2019


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384
Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000


MATHEMATICA

Which[Length@ Union@ #[[2 ;; 1]] == 1, Last@ #, MemberQ[{3, 5, 9}, Last@ #], 3, MemberQ[{19, 37, 73, 145, 29, 57}, Last@ #], 19, True, 0] & /@ Array[NestWhileList[If[CompositeQ@ #, Divisors[#][[2]], 2 #  1] &, #, UnsameQ[##] &, All] &, 106] (* Michael De Vlieger, Jan 03 2019 *)


PROG

(PARI)
A322982(n) = if((1==n)isprime(n), n+n1, n/vecmin(factor(n)[, 1]));
A087717(n) = { my(visited = Map(), visited_at_step = Map(), j=0, m=0, t); while(!mapisdefined(visited, n), mapput(visited, n, j); mapput(visited_at_step, j, n); j++; n = A322982(n)); for(k=mapget(visited, n), j1, t = mapget(visited_at_step, k); if(!m  (t<m), m=t)); (m); }; \\ Antti Karttunen, Jan 03 2019


CROSSREFS

Cf. A322982.
Sequence in context: A122553 A157831 A032552 * A053444 A175797 A243129
Adjacent sequences: A087714 A087715 A087716 * A087718 A087719 A087720


KEYWORD

nonn


AUTHOR

John W. Layman, Sep 29 2003


EXTENSIONS

Name edited and the term a(1) = 1 prepended by Antti Karttunen, Jan 03 2019


STATUS

approved



