login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087717 Start with x=n, then iterate the map x -> A322982(x) with A322982(x)=2*x-1 if x is noncomposite, otherwise A322982(x) = A032742(x), the largest proper divisor of x. If this iteration leads to a fixed point then a(n) is the value of that fixed point. If the iteration leads to a cycle, a(n) is the smallest value in the cycle. If the iteration never becomes periodic then a(n)=0. 3
1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 19, 19, 3, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjecture. For n > 1, the iteration given in the definition above always leads to the 3-cycle {3,5,9,3} or the 6-cycle {19,37,73,145,29,57,19}, thus a(n) takes on only the values 3 or 19 for n=2,3,4,.... This has been verified to n=1000000.

In range 2..100000 term 3 occurs 77630 times, while 19 occurs 22369 times. - Antti Karttunen, Jan 03 2019

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000

MATHEMATICA

Which[Length@ Union@ #[[-2 ;; -1]] == 1, Last@ #, MemberQ[{3, 5, 9}, Last@ #], 3, MemberQ[{19, 37, 73, 145, 29, 57}, Last@ #], 19, True, 0] & /@ Array[NestWhileList[If[CompositeQ@ #, Divisors[#][[-2]], 2 # - 1] &, #, UnsameQ[##] &, All] &, 106] (* Michael De Vlieger, Jan 03 2019 *)

PROG

(PARI)

A322982(n) = if((1==n)||isprime(n), n+n-1, n/vecmin(factor(n)[, 1]));

A087717(n) = { my(visited = Map(), visited_at_step = Map(), j=0, m=0, t); while(!mapisdefined(visited, n), mapput(visited, n, j); mapput(visited_at_step, j, n); j++; n = A322982(n)); for(k=mapget(visited, n), j-1, t = mapget(visited_at_step, k); if(!m || (t<m), m=t)); (m); }; \\ Antti Karttunen, Jan 03 2019

CROSSREFS

Cf. A322982.

Sequence in context: A122553 A157831 A032552 * A053444 A175797 A243129

Adjacent sequences:  A087714 A087715 A087716 * A087718 A087719 A087720

KEYWORD

nonn

AUTHOR

John W. Layman, Sep 29 2003

EXTENSIONS

Name edited and the term a(1) = 1 prepended by Antti Karttunen, Jan 03 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 08:44 EST 2019. Contains 320325 sequences. (Running on oeis4.)