The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087695 Numbers n such that n + 3 and n - 3 are both prime. 20
 8, 10, 14, 16, 20, 26, 34, 40, 44, 50, 56, 64, 70, 76, 86, 100, 104, 106, 110, 134, 154, 160, 170, 176, 194, 196, 226, 230, 236, 254, 260, 266, 274, 280, 310, 314, 334, 350, 356, 370, 376, 386, 436, 446, 460, 464, 506, 544, 560, 566, 574, 590, 596 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A010051(a(n)-3) * A010051(a(n)+3) = 1. - Reinhard Zumkeller, Nov 17 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A046117(n) - 3. MAPLE ZL:=[]:for p from 1 to 600 do if (isprime(p) and isprime(p+6) ) then ZL:=[op(ZL), (p+(p+6))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007 MATHEMATICA lst={}; Do[If[PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *) Select[Range[600], AllTrue[#+{3, -3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 06 2015 *) PROG (Haskell) a087695 n = a087695_list !! (n-1) a087695_list = filter    (\x -> a010051' (x - 3) == 1 && a010051' (x + 3) == 1) [2, 4 ..] -- Reinhard Zumkeller, Nov 17 2015 (PARI) p=2; q=3; forprime(r=5, 1e3, if(q-p<7 && (q-p==6 || r-p==6), print1(p+3", ")); p=q; q=r) \\ Charles R Greathouse IV, May 22 2018 CROSSREFS Cf. A014574, A087678-A087683, A087696, A087697, A088763, A046117, A010051. Sequence in context: A171689 A163628 A060864 * A322998 A262708 A134321 Adjacent sequences:  A087692 A087693 A087694 * A087696 A087697 A087698 KEYWORD easy,nonn AUTHOR Zak Seidov, Sep 27 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 23:23 EDT 2020. Contains 337346 sequences. (Running on oeis4.)