login
A087694
Number of solutions to x^2 + xy + y^2 == 0 (mod n).
2
1, 1, 3, 4, 1, 3, 13, 4, 9, 1, 1, 12, 25, 13, 3, 16, 1, 9, 37, 4, 39, 1, 1, 12, 25, 25, 27, 52, 1, 3, 61, 16, 3, 1, 13, 36, 73, 37, 75, 4, 1, 39, 85, 4, 9, 1, 1, 48, 133, 25, 3, 100, 1, 27, 1, 52, 111, 1, 1, 12, 121, 61, 117, 64, 25, 3, 133, 4, 3, 13
OFFSET
1,3
LINKS
FORMULA
Multiplicative with a(3^e) = 3^e, a(p^e) = ((p-1)*e+p)*p^(e-1) if p mod 3 = 1, a(p^e) = p^(2*floor(e/2)) if p mod 3 = 2. - Vladeta Jovovic, Sep 27 2003
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A073010/A086724 = 0.77383581325017004332... . - Amiram Eldar, Nov 21 2023
MAPLE
A087694 := proc(n) option remember; local pf, p, f, e ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then f := op(1, pf) ; p := op(1, f) ; e := op(2, f) ; if p = 3 then n ; elif p mod 3 =1 then ((p-1)*e+p)*p^(e-1) ; else p^(2*floor(e/2)) ; end if; else mul(procname(op(1, p)^op(2, p)), p=pf) ; end if; end if; end proc:
seq(A087694(n), n=1..70) ; # R. J. Mathar, Jan 07 2011
MATHEMATICA
a[n_] := If[n==1, 1, Product[{p, e} = pe; Which[p==3, 3^e, Mod[p, 3] == 2, (p^2)^Quotient[e, 2], True, ((p-1) e + p) p^(e-1)], {pe, FactorInteger[n] }]];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
PROG
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==3, 3^e, if(p%3==2, (p^2)^(e\2), ((p-1)*e+p)*p^(e-1))))} \\ Andrew Howroyd, Jul 09 2018
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 27 2003
STATUS
approved